Which expression is equivalent to RootIndex 4 StartRoot StartFraction 24 x Superscript 6 Baseline y Over 128 x Superscript 4 Baseline y Superscript 5 Baseline EndFraction EndRoot? Assume x not-equals 0 and y
StartFraction RootIndex 4 StartRoot 3 EndRoot Over 2 x squared y EndFraction
StartFraction x (RootIndex 4 StartRoot 3 EndRoot) Over 4 y squared EndFraction
StartFraction RootIndex 4 StartRoot 3 EndRoot Over 4 x y squared EndFraction
StartFraction RootIndex 4 StartRoot 3 x squared EndRoot Over 2 y EndFraction

Respuesta :

Answer:

The expression is equivalent to[tex]A=\sqrt[4]{\frac{24\ x^{6}\ y}{128\ x^{4}\ y^{5}}}[/tex] is  [tex]\frac{\sqrt[4]{3}}{2}}\times \frac{\sqrt{x}}{y}[/tex].

Step-by-step explanation:

The expression provided is:

[tex]A=\sqrt[4]{\frac{24\ x^{6}\ y}{128\ x^{4}\ y^{5}}}[/tex]

Simplify the expression A as follows:

[tex]A=\sqrt[4]{\frac{24\ x^{6}\ y}{128\ x^{4}\ y^{5}}}[/tex]

   [tex]=\sqrt[4]{\frac{24}{128}\times x^{(6-4)}\times y^{(1-5)}}\\\\=\sqrt[4]{\frac{3}{16}\times x^{2}\times y^{-4}}\\\\=[\frac{3}{16}\times x^{2}\times y^{-4}]^{1/4}\\\\=[\frac{3}{16}]^{1/4}\times x^{(2\times (1/4))}\times y^{(-4\times (1/4))}\\\\=\frac{\sqrt[4]{3}}{2}}\times x^{1/2}\times y^{-1}\\\\=\frac{\sqrt[4]{3}}{2}}\times \frac{\sqrt{x}}{y}[/tex]

Thus, the expression is equivalent to[tex]A=\sqrt[4]{\frac{24\ x^{6}\ y}{128\ x^{4}\ y^{5}}}[/tex] is  [tex]\frac{\sqrt[4]{3}}{2}}\times \frac{\sqrt{x}}{y}[/tex].

Equivalent expressions are expressions that have equal values

The equivalent expression of [tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}[/tex] is [tex]\frac 1{2y}\sqrt[4]{ 3x^2}}[/tex]

The expression is given as:

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}[/tex]

Divide 24 and 128 by 8

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}= \sqrt[4]{ \frac{3x^6y}{16x^4y^5}}[/tex]

Take 4th root of 16

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}= \frac 12\sqrt[4]{ \frac{3x^6y}{x^4y^5}}[/tex]

Apply law of indices, to simplify the fraction

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}= \frac 12\sqrt[4]{ 3x^{6-4}y^{1-5}}[/tex]

Simplify

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}= \frac 12\sqrt[4]{ 3x^{2}y^{-4}}[/tex]

Rewrite as:

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}= \frac 12\sqrt[4]{ \frac{3x^{2}}{y^4}}[/tex]

Take 4th root of y^4

[tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}= \frac 1{2y}\sqrt[4]{ 3x^2}}[/tex]

Hence, the equivalent expression of [tex]\sqrt[4]{ \frac{24x^6y}{128x^4y^5}}[/tex] is [tex]\frac 1{2y}\sqrt[4]{ 3x^2}}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/15715866