Respuesta :
[tex]A=P \frac{1-(1+ \frac{r}{t} )^{-nt}}{ \frac{r}{t} } [/tex]; where A is the initial value, P is the periodic withdrawal, r is the rate, t is the number of compounding in a year, n is the number of years.
[tex]A=P \frac{1-(1+ \frac{r}{t} )^{-nt}}{ \frac{r}{t} } \\ =4,567 \times \frac{1-(1+ \frac{0.0101}{4} )^{-35 \times 4}}{ \frac{0.0101}{4} } \\ =4,567 \times \frac{1-(1+ 0.002525)^{-140}}{ 0.002525 } \\ =4,567 \times \frac{1-(1.002525)^{-140}}{ 0.002525 } \\ =4,567 \times \frac{1-0.7025}{ 0.002525 } \\ =4,567 \times \frac{0.2975}{ 0.002525 } \\ =4,567 \times 117.8 \\ =$538,021.66[/tex]
Therefore, initial value = $538,021.66
[tex]A=P \frac{1-(1+ \frac{r}{t} )^{-nt}}{ \frac{r}{t} } \\ =4,567 \times \frac{1-(1+ \frac{0.0101}{4} )^{-35 \times 4}}{ \frac{0.0101}{4} } \\ =4,567 \times \frac{1-(1+ 0.002525)^{-140}}{ 0.002525 } \\ =4,567 \times \frac{1-(1.002525)^{-140}}{ 0.002525 } \\ =4,567 \times \frac{1-0.7025}{ 0.002525 } \\ =4,567 \times \frac{0.2975}{ 0.002525 } \\ =4,567 \times 117.8 \\ =$538,021.66[/tex]
Therefore, initial value = $538,021.66
Answer:
C. $538,021.66
Step-by-step explanation:
It is given that the money Seth withdraws was compounded every quarter for 35 years. So, we get,
Amount withdrawn every quarter, P = $4567
Rate of interest, r = [tex]\frac{0.0101}{4}[/tex] = 0.002525
Time period, n = 35 × 4 = 140
Now, as we know the formula for annuity as,
[tex]P=\frac{r \times PV}{1-(1+r)^{-n}}[/tex]
where P = installments, PV = present value, r = rate of interest and n = time period.
This gives, [tex]PV=\frac{P \times [1-(1+r)^{-n}]}{r}[/tex]
i.e. [tex]PV=\frac{4567 \times [1-(1+0.002525)^{-140}]}{0.002525}[/tex]
i.e. [tex]PV=\frac{4567 \times [1-(1.002525)^{-140}]}{0.002525}[/tex]
i.e. [tex]PV=\frac{4567 \times [1-0.7021]}{0.002525}[/tex]
i.e. [tex]PV=\frac{4567 \times 0.2975}{0.002525}[/tex]
i.e. [tex]PV=\frac{1358.68}{0.002525}[/tex]
i.e. [tex]PV=538,091.08[/tex]
So, the closest answer to initial value of the account is $538,021.66
Hence, option C is correct.