Answer:
Step-by-step explanation:
Let P = Pudge's Apples
Let A = Ace's Apples
Let C = Christi's Apples
Given that P = 3A , A = 2C and P = A + C + 12
Substitute the value for P in P = A + C + 12 we get
3A = A + C + 12
3A-A=C+12
2A=C+12
From A = 2C we have that [tex]C=\frac{A}{2}[/tex]
Substitute the value C:
[tex]2A=\frac{A}{2}+12[/tex]
[tex]2A-\frac{A}{2}=12[/tex]
[tex]\frac{4A-A}{2}=12[/tex]
[tex]\frac{3A}{2}=12[/tex]
[tex]3A=12\times 2[/tex]
[tex]A=\frac{24}{3}[/tex]
Substituting the value of A in P=3A we get
P = 3(8)
Substituting the values of P and A in P = A + C + 12
[tex]24=8+C+12[/tex]
[tex]24=C+20[/tex]
[tex]24-20=C[/tex]
4=C
Rewritting we get