Respuesta :
Answer:
b) 3.72m/s²
c) 9.33*10^5
d) 9.33*10^5
e) 11.85 hrs
Explanation:
a) to confirm that gEarth is about 98 m/s².
Let's use the formula:
[tex]gEarth= \frac{G*M}{R^2}[/tex]
[tex] = \frac{6.67*10^-^1^1*5.972*10^2^4}{(6378*10^3)^2}[/tex]
= 9.78 m/s²
=> 9.8m/s²
b) Given:
[tex]m = 6.417*10^2^3[/tex]
r = 2106 miles
[tex]g_Mars = \frac{G*M}{R^2}[/tex]
[tex] = \frac{6.67*10^-^1^1*6.417*10^2^3}{(2106*1.61*10^3)^2}[/tex]
=3.72 m/s²
c) we use:
[tex] F = \frac{G*M*m}{R^2}[/tex]
[tex]=\frac{6.67*10^-^1^1*5.972*10^2^4*1630*10^3}{((20000+6378)*10^3)^2}[/tex]
[tex]= 9.33*10^5 N [/tex]
d) Let's take the force of gravitybon earth due to satellite as our answer in (c) because the Earth's gravitational force on a GPS satellite and the force of gravity on a GPS satellite on earth are equal and opposite (two mutual forces).
[tex] F = 9.33*10^5 N [/tex]
e) In a circular motion,
Gravitional force = Centripetal force.
[tex]\frac{GM*m}{R^2}=\frac{m*v^2}{R}[/tex]
[tex] \frac{GM}{R}= v^2[/tex]
Solving for v, we have
[tex] v= \sqrt{\frac{6*67*10^-^1^1*5.972*10^2^4}{(20000+6278)*10^3}}[/tex]
v = 3886m/s
Therefore,
v = 2πR/T
[tex]3886 = \frac{2*pi*(20000+6378)*10^3}{T}[/tex]
Solving for T, we have:
T = 42650seconds
Convert T to hours
T = 42650/60*60
T = 11.86hrs