What bearing and airspeed are required for a plane to fly 700 miles due north in 3.5 hours if the wind is blowing from a direction of 338 degrees at 10 ​mph? The plane should fly at nothing mph at a bearing of nothing degrees. Calculator

Respuesta :

Answer:

1. Airspeed = 201.17 mph

2. Bearing  = 358.93⁰

Step-by-step explanation:

Given Data:

d = 700 mi

t = 3.5 hrs

speed of wind Vx = 10 mph

velocity of plane Vy = d/t

                                  = 700/3.5

                                  = 200 mph

1. Air speed (V) is calculated using the formula;

V² = V²x + V²y -2*Vx *Vy*cos∝

But ∝ = 338 - 180 = 158°

Substituting into the equation, we have

V² = 10² + 200² - 2*10*200*Cos 158

    = 40100 - 400 *(-0.92718)

    = 40100 + 370.872

 V²   = 40470.872

V = √40470.872

V = 201.17 mph

2. calculating the bearing using cosine rule, we have;

sin∅/Vx = sin∝/V

sin∅/10 = sin158/201.17

sin∅ = 10*sin 158/201.17

        = 3.746/201.17

       = 0.0186

∅ = sin⁻¹ 0.0186

   = 1.07

Therefore,

Bearing = 360 - 1.07

              = 358.93⁰

The airspeed is 201.17 mph and bearing is [tex]358.93^\circ[/tex] and this can be determined by using the vector form of velocity.

Given :

Plane to fly 700 miles due north in 3.5 hours if the wind is blowing from a direction of 338 degrees at 10 ​mph.

To determine the airspeed the following formula can be used.

[tex]\rm V^2 = V^2_x +V^2_y-2V_xV_y cos \theta[/tex]    ---- (1)

where, [tex]\theta = 338-180 = 158^\circ[/tex], [tex]\rm V_y[/tex] is the velocity of the plane and [tex]\rm V_x[/tex] is the velocity of the wind.

Now, put the value of [tex]\rm V_y[/tex], [tex]\rm V_x[/tex] and [tex]\theta[/tex] in the equation (1).

[tex]\rm V^2 = 10^2+200^2+2\times 10\times 200\times cos158[/tex]

[tex]\rm V^2= 100 + 40000+4000(-0.9271)[/tex]

V = 201.17 mph

Now, using cosine rule:

[tex]\rm \dfrac{sin \alpha}{V_x}=\dfrac{sin \theta }{V}[/tex]

[tex]\rm \dfrac{sin\alpha }{10}=\dfrac{sin158}{201.17}[/tex]

[tex]\rm sin\alpha =10\times \dfrac{sin158}{201.17}[/tex]

[tex]\rm sin \alpha = \dfrac{3.746}{201.17}[/tex]

[tex]\rm sin\alpha =0.0186[/tex]

[tex]\alpha = 1.07^\circ[/tex]

Therefore, the bearing is given by 360 - 13.07 = [tex]358.93^\circ[/tex]

For more information, refer to the link given below:

https://brainly.com/question/24376522