contestada

A rotating viscometer consists of two concentric cylinders –an inner cylinder of radius Rirotating at angular velocity (rotation rate) ωi, and a stationary outer cylinder of inside radius Ro. In the tiny gap between the two cylinders is the fluid of viscosity μ. The length of the cylinders (into the page) is L. L is large such that end effects are negligible (we can treat this as a two-dimensional problem). Torque (T) is required to rotate the inner cylinder at a constant speed. (a) Showing all of your work and algebra, generate an approximate expression for T as a function of the other variables.

(b) Explain why your solution is only an approximation. In particular, do you expect the velocity prole in the gap to remain linear as the gap becomes larger and larger (i.e., if the outer radiusR0 were to increase, all else staying the same)?

Respuesta :

Answer:

b)  the result we got can be termed approximation because we are neglecting the shear stress acting on the two ends of the cylinder. Here we have considered only the share stress acting on the curved surface area only.

Explanation:

check attachment for solution to A

Ver imagen adebayodeborah8