The terminal side of an angle measuring StartFraction pi Over 6 EndFraction radians intersects the unit circle at what point? (StartFraction StartRoot 3 EndRoot Over 2 EndFraction, one-half) (one-half, StartFraction StartRoot 3 EndRoot Over 2 EndFraction) (StartFraction StartRoot 3 EndRoot Over 3 EndFraction, one-half) (one-half, StartFraction StartRoot 3 EndRoot Over 3 EndFraction)

Respuesta :

Answer:

A. [tex](\frac{\sqrt{3} }{2} ,\frac{1}{2} )[/tex]

Step-by-step explanation:

From the diagram produced, we require the coordinate of point P.

Applying trigonometric ratio in the right triangle.

[tex]sin \theta=\frac{Opposite}{Hypotenuse} \\sin (\pi /6)=\frac{y}{1}sin (\pi /6)=y\\y=\frac{1}{2}[/tex]

Similarly

[tex]cos \theta=\frac{Adjacent}{Hypotenuse} \\sin (\pi /6)=\frac{x}{1}cos (\pi /6)=x\\x=\frac{\sqrt{3}}{2}[/tex]

The coordinates (x,y) of the point of intersection P are therefore [tex](\frac{\sqrt{3} }{2} ,\frac{1}{2} )[/tex]

Ver imagen Newton9022

Answer:

the answer is attached in the picture below

Ver imagen froghome30