Respuesta :
Answer:
A. [tex](\frac{\sqrt{3} }{2} ,\frac{1}{2} )[/tex]
Step-by-step explanation:
From the diagram produced, we require the coordinate of point P.
Applying trigonometric ratio in the right triangle.
[tex]sin \theta=\frac{Opposite}{Hypotenuse} \\sin (\pi /6)=\frac{y}{1}sin (\pi /6)=y\\y=\frac{1}{2}[/tex]
Similarly
[tex]cos \theta=\frac{Adjacent}{Hypotenuse} \\sin (\pi /6)=\frac{x}{1}cos (\pi /6)=x\\x=\frac{\sqrt{3}}{2}[/tex]
The coordinates (x,y) of the point of intersection P are therefore [tex](\frac{\sqrt{3} }{2} ,\frac{1}{2} )[/tex]
