You have a solution of two volatile liquids, A and B (assume ideal behavior). Pure liquid A has a vapor pressure of 385.0 torr and pure liquid B has a vapor pressure of 104.0 torr at the temperature of the solution. The vapor at equilibrium above the solution has double the mole fraction of substance A as the solution does. What is the mole fraction of liquid A in the solution?

Respuesta :

Answer:

the mole fraction of A in solution is 0.32

Explanation:

Let's consider a solution of two volatile liquids A and B

Vapor pressure of A is 385.0 torr

Vapor pressure of B  is 104.0 torr

According to Dalton's Law

[tex]P_T = P_A + P_B[/tex]          ---------- Equation (1)

where [tex]P_A \ and \ P_B[/tex] are partial pressure of A and B respectively.

Using Roult's Law

[tex]P_T = X_AP^0_A + X_BP^0_B[/tex]  ---------- Equation (2)

where;

[tex]P_T =[/tex] the total vapor pressure of the solution

[tex]X_A \ and \ X_B[/tex] = mole fraction of A and B respectively

[tex]P_A^0 \ and \ P_B^0[/tex] = vapor pressures of pure species of A and B

So;

[tex]P_A = X_AP^0[/tex]

[tex]P_B =X_BP^0_B[/tex]

Replacing our given values for [tex]P_A^0[/tex] and [tex]P_B^0[/tex]  into equation (2) ; we have:

[tex]P_T = X_A * 385 + X_B * 104[/tex]

The sum of mole fractions is equal to 1

[tex]X_A + X_B = 1[/tex]

[tex]X_B = 1 - X_A[/tex]

Hence;

[tex]P_T = X_A *385 + X_B * 104[/tex]

[tex]= 385 X_A +(1 -X_A) 104\\ \\= 385 X_A + 104 - 104 X_A[/tex]

[tex]= 281 X_A + 104[/tex]   ------ Equation (3)

It is given that mole fraction of vapor is equal to twice the mole fraction of liquid .

[tex](X^0_A)_{vapor} = 2(X^0_A)_{liquid}[/tex]

It is known that; a partial pressure of a component in gaseous phase is equal to mole fraction times the total pressures. As such;

[tex]P_A = (X^v_A)_{vapor} * P_T[/tex]

[tex](X^v_A)_{vapor} = \frac{P_A}{P_T}[/tex]

[tex]\frac{P_A}{P_T}= 2(X^L_A)_{vapor}[/tex]  ------- Equation (4)

Partial Pressure is given as follows :

[tex]P_A =X^L_A P^0_A[/tex]

Thus; from equation 4

[tex]\frac{X_A^LP_A^0}{P_T}= 2 (X^L_A)_{liquid}[/tex]

[tex]\frac{P^0_A}{P_T }= 2[/tex]

[tex]\frac{P_A^0}{2}= P_T[/tex]

Replacing the above value into equation (8)

[tex]\frac{P^0_A}{2}= 281 X_A + 104[/tex]

[tex]\frac{385}{2}= 281 X_A +104[/tex]

192.5 = 281[tex]X_A + 104[/tex]

192.5 - 104 = [tex]281 \ X_A[/tex]

88.5 = [tex]281 \ X_A[/tex]

[tex]X_A = \frac{88.5}{281}[/tex]

[tex]X_A[/tex] = 0.32

Thus, the mole fraction of A in solution is 0.32