Answer:
[tex]I=2.6363\ kg.m^2[/tex]
Explanation:
Given:
dimension of uniform plate, [tex](0.673\times 0.535)\ m^2[/tex]
mass of plate, [tex]m=10.7\ kg[/tex]
Now we find the moment of inertia about the center of mass of the rectangular plate is given as:
[tex]I_{cm}=\frac{1}{12} \times m(L^2+B^2)[/tex]
where:
[tex]L=[/tex] length of the plate
[tex]B=[/tex] breadth of the plate
[tex]I_{cm}=\frac{1}{12} \times 10.7\times(0.673^2+0.535^2)[/tex]
[tex]I_{cm}=0.6591\ kg.m^2[/tex]
We know that the center of mass of the rectangular plane is at its geometric center which is parallel to the desired axis XX' .
Now we find the distance between the center of mass and the corner:
[tex]s=\frac{\sqrt{ (0.673^2+0.535^2)}}{2}[/tex]
[tex]s=0.4299\ m[/tex]
Now using parallel axis theorem:
[tex]I=I_{cm}+m.s^2[/tex]
[tex]I=0.6591+10.7\times 0.4299^2[/tex]
[tex]I=2.6363\ kg.m^2[/tex]