A key lime pie in a 10.00 inch diameter plate is placed upon a rotating tray. Then, the tray is rotated such that the rim of the pie plate moves through a distance of 108 inches. Express the angular distance that the pie plate has moved through in revolutions, radians, and degrees.(________) revolutions(________)radians(________)degreeIf the pie is cut into 9 equal slices, express the angular size of one slice in radians, as a fraction of pie?

Respuesta :

Answer:

The angular distance in revolution is [tex]revolution = 3.439 \ revolution[/tex]

The angular distance in radians  is [tex]\theta_{rad}= 21.6 \ radians[/tex]

The angular distance in degrees  is   [tex]\theta =1238.04^o[/tex]

The angular size is   [tex]Z = \frac{2}{9} \pi \ radians[/tex]

Explanation:

From the question we are told that  

  The diameter is [tex]d = 10 \ inches[/tex]

   The distance moved by the rim is [tex]D = 108 \ inches[/tex]

Generally the circumference of the pie plate is mathematically represented as

               [tex]C = \pi d[/tex]

Substituting the values  

          [tex]C = 10 *3.142[/tex]

             [tex]= 31.42 \ inches[/tex]

The number resolution carried out by the pie plate is evaluated as

           [tex]revolution = \frac{D}{C}[/tex]

Substituting value

            [tex]revolution = \frac{108}{31.4}[/tex]

                              [tex]revolution = 3.439 \ revolution[/tex]

The angular  distance [tex]\theta_{rad}[/tex] is mathematically evaluated as

                [tex]\theta_{rad} = \frac{D}{r}[/tex]

             Where r is the radius which is mathematically evaluated as

                        [tex]r = \frac{d}{2} = \frac{10}{2} = 5 \ inches[/tex]

Substituting  this into the equation for angular distance

                      [tex]\theta_{rad} = \frac{108}{5}[/tex]

                              [tex]\theta_{rad}= 21.6 \ radians[/tex]

The angular distance traveled in degrees is

                   [tex]\theta = 3.439 *360[/tex]

                      [tex]\theta =1238.04^o[/tex]

When  the pie is cut into 9 equal parts

The angular size would be mathematically evaluated as

                         [tex]Z = \frac{2\pi}{9}[/tex]

                           [tex]Z = \frac{2}{9} \pi \ radians[/tex]