Respuesta :

Given:

Given that the graph of a triangle BDE.

The coordinates of the triangle are B(-2,3), D(2,6) and E(3,2)

We need to determine the perimeter of the triangle BDE.

Length of BD:

The length of BD can be determined by substituting the coordinates (-2,3) and (2,6) in the formula,

[tex]BD=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]BD=\sqrt{(2+2)^2+(6-3)^2}[/tex]

[tex]BD=\sqrt{(4)^2+(3)^2}[/tex]

[tex]BD=\sqrt{16+9}[/tex]

[tex]BD=\sqrt{25}[/tex]

[tex]BD=5[/tex]

Length of DE:

Substituting the coordinates of D(2,6) and E(3,2) in the formula, we get;

[tex]DE=\sqrt{(3-2)^2+(2-6)^2}[/tex]

[tex]DE=\sqrt{(1)^2+(-4)^2}[/tex]

[tex]DE=\sqrt{1+16}[/tex]

[tex]DE=\sqrt{17}[/tex]

Length of BE:

Substituting the coordinates of B(-2,3) and E(3,2) in the formula, we get;

[tex]BE=\sqrt{(3+2)^2+(2-3)^2}[/tex]

[tex]BE=\sqrt{(5)^2+(-1)^2}[/tex]

[tex]BE=\sqrt{25+1}[/tex]

[tex]BE=\sqrt{26}[/tex]

Perimeter of ΔBDE:

The perimeter of triangle BDE can be determined by adding the lengths of BD, DE and BE.

Thus, we have;

[tex]Perimeter=5+\sqrt{17}+\sqrt{26}[/tex]

Hence, the perimeter of ΔBDE is √17 + √26 + 5

Thus, Option A is the correct answer.