What is the hydronium ion concentration of a 0.150 M hypochlorous acid solution with K a = 3.5 × 10-8? The equation for the dissociation of hypochlorous acid is:

HOCl(aq) + H2O(l) ⇌ H3O+(aq) + OCl-(aq).

Respuesta :

Answer:

The concentration of [tex][H_3O^+][/tex] is[tex]0.725 \times 10^{-4} \ M[/tex].

Explanation:

Let the initial concentration of weak acid be c m/liter and [tex]\alpha[/tex] be change of concentration.

The reaction of an acid with water is given by the general expression

                                            [tex]HA(aq) +H_2O(l) \rightleftharpoons H_3O^+(aq)+A^-[/tex]

Initial Concentration              c                               0                0

Change in concentration     -[tex]\alpha[/tex]                              +[tex]\alpha[/tex]             +[tex]\alpha[/tex]

Equilibrium Concentration     c-[tex]\alpha[/tex]                           [tex]\alpha[/tex]              [tex]\alpha[/tex]

[tex]K_a=\frac{[A^-][H_3O^+]}{[HA]}[/tex]

    [tex]=\frac{(\alpha)(\alpha)}{c-\alpha}[/tex]

    [tex]=\frac{\alpha^2}{c-\alpha}[/tex]

    [tex]=\frac{\alpha^2}{c}[/tex]             [ For weak acid , the value of [tex]\alpha[/tex] is so small, ∴[tex]c-\alpha \approx c[/tex]]

[tex]\therefore K_a= \frac{\alpha^2}{c}[/tex]

[tex]\Rightarrow \alpha^2={K_a}\times{c}[/tex]

[tex]\Rightarrow \alpha = \sqrt{K_a\times c}[/tex]

The concentration of [tex][H_3O^+][/tex] is [tex]\alpha[/tex]   [tex]=\sqrt {K_a\times c}[/tex]  

                                             

Given equation is

[tex]HOCl(aq) +H_2O(l)\rightleftharpoons H_3O^+(aq)+OCl^-(aq)[/tex]

The initial concentration of the hypochlorous acid solution is 0.150 M.

The ionization constant [tex]K_a= 3.5 \times 10^{-8}[/tex]

The concentration of [tex][H_3O^+][/tex] is [tex]\alpha[/tex]   [tex]=\sqrt {K_a\times c}[/tex]

                                                        = [tex]\sqrt {3.5 \times 10^{-8}\times 0.150[/tex] M

                                                      [tex]= 0.725 \times 10^{-4}[/tex] M