Respuesta :

Answer:

Option B - [tex]\ln(\frac{4y^5}{x^2})=\ln 4+5\ln y-2\ln x[/tex]

Step-by-step explanation:

Given : Expression [tex]\ln(\frac{4y^5}{x^2})[/tex]

To find : Expand each expression ?

Solution :

Using logarithmic properties,

[tex]\ln (\frac{A}{B})=\frac{\ln A}{\ln B}=\ln A-\ln B[/tex]

and [tex]\ln (AB)=\ln A+\ln B[/tex]

Here, A=4y^5 and B=x^2

[tex]\ln(\frac{4y^5}{x^2})=\frac{\ln 4y^5}{\ln x^2}[/tex]

[tex]\ln(\frac{4y^5}{x^2})=\ln 4y^5-\ln x^2[/tex]

[tex]\ln(\frac{4y^5}{x^2})=\ln 4+\ln y^5-\ln x^2[/tex]

Using logarithmic property, [tex]\logx^a=a\log x[/tex]

[tex]\ln(\frac{4y^5}{x^2})=\ln 4+5\ln y-2\ln x[/tex]

Therefore, option B is correct.

Answer:

the answer is B

Step-by-step explanation:

i got it right on edge 2020