Respuesta :
Answer:
Option B - [tex]\ln(\frac{4y^5}{x^2})=\ln 4+5\ln y-2\ln x[/tex]
Step-by-step explanation:
Given : Expression [tex]\ln(\frac{4y^5}{x^2})[/tex]
To find : Expand each expression ?
Solution :
Using logarithmic properties,
[tex]\ln (\frac{A}{B})=\frac{\ln A}{\ln B}=\ln A-\ln B[/tex]
and [tex]\ln (AB)=\ln A+\ln B[/tex]
Here, A=4y^5 and B=x^2
[tex]\ln(\frac{4y^5}{x^2})=\frac{\ln 4y^5}{\ln x^2}[/tex]
[tex]\ln(\frac{4y^5}{x^2})=\ln 4y^5-\ln x^2[/tex]
[tex]\ln(\frac{4y^5}{x^2})=\ln 4+\ln y^5-\ln x^2[/tex]
Using logarithmic property, [tex]\logx^a=a\log x[/tex]
[tex]\ln(\frac{4y^5}{x^2})=\ln 4+5\ln y-2\ln x[/tex]
Therefore, option B is correct.
Answer:
the answer is B
Step-by-step explanation:
i got it right on edge 2020