Respuesta :

Answer:

[tex](x-3)^2+ (y+5)^2=10[/tex]

Step-by-step explanation:

Given the equation of the circle: [tex]x^2 + y^2 - 6x + 10y + 24 = 0[/tex]

We wish to express it in a Standard form:

We begin by re-arranging:

[tex]x^2 - 6x + y^2 + 10y = - 24[/tex]

Next, divide the coefficient of x by 2, square it and add it to both sides.

Do the same for y.

[tex]x^2 - 6x +(-3)^2+ y^2 + 10y+5^2 = - 24+(-3)^2+5^2[/tex]

Next, we factorize

[tex](x-3)^2+ (y+5)^2 = - 24+9+25\\(x-3)^2+ (y+5)^2=10[/tex]

This is the standard form.