Respuesta :

Given:

Given that ABCD is a rectangle.

The diagonals of the rectangle are AC and DB.

The length of AE is (6x -55)

The length of EC is (3x - 16)

We need to determine the length of the diagonal DB.

Value of x:

The value of x can be determined by equating AE and EC

Thus, we have;

[tex]AE=EC[/tex]

Substituting the values, we get;

[tex]6x-55=3x-16[/tex]

[tex]3x-55=-16[/tex]

       [tex]3x=39[/tex]

         [tex]x=13[/tex]

Thus, the value of x is 13.

Length of AC:

Length of AE = [tex]6(13)-55=78-55=23[/tex]

Length of EC = [tex]3(13)-16=39-16=23[/tex]

Thus, the length of AC can be determined by adding the lengths of AE and EC.

Thus, we have;

[tex]AC=AE+EC[/tex]

[tex]AC=23+23[/tex]

[tex]AC=46[/tex]

Thus, the length of AC is 46.

Length of DB:

Since, the diagonals AC and DB are perpendicular to each other, then their lengths are congruent.

Hence, we have;

[tex]AC=DB[/tex]

 [tex]46=DB[/tex]

Thus, the length of DB is 46.