A rectangular box with a square base is to be constructed from material that costs $9 per ft2 for the bottom, $5 per ft2 for the top, and $4 per ft2 for the sides. Find the box of greatest volume that can be constructed for $204. Round your answer to 2 decimals. slader -g

Respuesta :

Answer:

[tex]18.73ft^3[/tex]

Step-by-step explanation:

Let

Side of square base=x

Height of rectangular box=y

Area of square base=Area of top=[tex](side)^2=x^2[/tex]

Area of one side face=[tex]l\times b=xy[/tex]

Cost of bottom=$9 per square ft

Cost of top=$5 square ft

Cost of sides=$4 per square ft

Total cost=$204

Volume of rectangular box=[tex]V=lbh=x^2y[/tex]

Total cost=[tex]9(x^2)+5x^2+4(4xy)=14x^2+16xy[/tex]

[tex]204=14x^2+16xy[/tex]

[tex]204-14x^2=16xy[/tex]

[tex]y=\frac{204-14x^2}{16x}=\frac{102-7x^2}{8x}[/tex]

Substitute the values of y

[tex]V(x)=x^2\times \frac{102-7x^2}{8x}=\frac{1}{8}(102x-7x^3)[/tex]

Differentiate w.r.t x

[tex]V'(x)=\frac{1}{8}(102-21x^2)=0[/tex]

[tex]V'(x)=0[/tex]

[tex]\frac{1}{8}(102-21x^2)=0[/tex]

[tex]102-21x^2=0[/tex]

[tex]102=21x^2[/tex]

[tex]x^2=\frac{102}{21}=4.85[/tex]

[tex]x=\sqrt{4.85}=2.2[/tex]

It takes positive because side length cannot be negative.

Again differentiate w.r. t x

[tex]V''(x)=\frac{1}{8}(-42x)[/tex]

Substitute the value

[tex]V''(2.2)=-\frac{42}{8}(2.2)=-11.55<0[/tex]

Hence, the volume of box is maximum at x=2.2 ft

Substitute the value  of x

[tex]y=\frac{102-7(2.2)^2}{8(2.2)}=3.87 ft[/tex]

Greatest volume of box=[tex]x^2y=(2.2)^2\times 3.87=18.73 ft^3[/tex]