If angle θ is in standard position and the terminal side of θ intersects the unit circle at the point 1/[tex](1/\sqrt{10}, -3/\sqrt{10})[/tex]
find sin θ, cos θ,and tan θ.

sin θ =


cos θ =


tan θ =

Respuesta :

Answer:

Step-by-step explanation:

REcall that all the points of the unit circle have the following coordinates [tex](\cos \theta, \sin \theta)[/tex], where theta is the angle in standard position (that is, with the terminal side on the given point and the initial side on the x-axis).

Then in this case we have that [tex]\cos\theta = \frac{1}{\sqrt[]{10}}, \sin \theta =\frac{-3}{\sqrt[]{10}}[/tex].

Recall that [tex]\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{-3}{\sqrt[]{10}}}{\frac{1}{\sqrt[]{10}}} = -3[/tex]