Answer:
[tex]T=7.3575\ N.m[/tex]
Explanation:
Given:
length of the stick, [tex]l=100\ cm=1\ m[/tex]
position of holding the stick that acts as a hinge, [tex]f=0\ cm[/tex]
mass of the object, [tex]m=1\ kg[/tex]
position of hanging the mass on the meter stick, [tex]x=50\ cm=0.5\ m[/tex]
new position of hanging the mass, [tex]x'=75\ cm=0.75\ m[/tex]
Now the torque in the initial position:
[tex]T=mg.x[/tex]
where:
[tex]g=[/tex] acceleration due to gravity
[tex]T=1\times 9.81\times 0.5[/tex]
[tex]T=4.905\ N.m[/tex]
Now when the mass is at the new position:
[tex]T=mg.x'[/tex]
[tex]T=1\times 9.81\times 0.75[/tex]
[tex]T=7.3575\ N.m[/tex]