Respuesta :

Correction

P(-7,-5)

Answer:

d(-4,-3)

Step-by-step explanation:

-Given the coordinates of PQ as  P(-7,5) and Q(5,3).

-The sum of the ratios is:

[tex]\sum(ratios)=1+3\\\\=4[/tex]

Let d be the point that divide's the segment in the ratio 1:3

#The coordinates that divide the segment into a 1:3 ratio therefore has to be [tex]\frac{1}{4}|PQ|[/tex] from P.

#We determine the length of the x-axis coordinate:

[tex]|PQ|_x=Q_x-P_x\\\\=5--7\\\\=12\\\\\therefore d_x=-7+\frac{1}{4}\times 12\\\\=-4[/tex]

#We determine the length of the y-axis coordinate:

[tex]|PQ|_y=Q_y-P_y\\\\=3--5\\\\=8\\\\\therefore d_y=-5+\frac{1}{4}\times 8\\\\=-3[/tex]

Hence, the coordinates of point d is d(-4,-3)