Correction
P(-7,-5)
Answer:
d(-4,-3)
Step-by-step explanation:
-Given the coordinates of PQ as P(-7,5) and Q(5,3).
-The sum of the ratios is:
[tex]\sum(ratios)=1+3\\\\=4[/tex]
Let d be the point that divide's the segment in the ratio 1:3
#The coordinates that divide the segment into a 1:3 ratio therefore has to be [tex]\frac{1}{4}|PQ|[/tex] from P.
#We determine the length of the x-axis coordinate:
[tex]|PQ|_x=Q_x-P_x\\\\=5--7\\\\=12\\\\\therefore d_x=-7+\frac{1}{4}\times 12\\\\=-4[/tex]
#We determine the length of the y-axis coordinate:
[tex]|PQ|_y=Q_y-P_y\\\\=3--5\\\\=8\\\\\therefore d_y=-5+\frac{1}{4}\times 8\\\\=-3[/tex]
Hence, the coordinates of point d is d(-4,-3)