Answer:
[0.4979, 0.5479]
Step-by-step explanation:
-We first determine the sample proportion:
[tex]\hat p=\frac{x}{n}\\\\=\frac{528}{1008}\\\\=0.5238[/tex]
-The confidence intervals of a sample proportion is calculated using the formula:
[tex]CI=\hat p\pm z\sqrt{\frac{\hat p(1-\hat p}{n}}[/tex]
#We substitute for the sample proportion and z value to get the Confidence interval:
[tex]CI=\hat p\pm z\sqrt{\frac{\hat p(1-\hat p}{n}}\\\\=0.5238\pm 1.645\times \sqrt{\frac{0.5238\times0.4762}{1008}}\\\\=0.5238\pm0.0259\\\\=[0.4979,0.5497][/tex]
Hence, the 90% confidence intervals is [0.4979,0.5479]