Air enters an adiabatic compressor at 104 kPa and 292 K and exits at a temperature of 565 K. Determine the power (kW) for the compressor if the inlet volumetric flow rate is 0.15 m3/s. Use constant specific heats evaluated at 300 K.

Respuesta :

Answer:

[tex]\dot W_{in} = 49.386\,kW[/tex]

Explanation:

An adiabatic compressor is modelled as follows by using the First Law of Thermodynamics:

[tex]\dot W_{in} + \dot m \cdot c_{p}\cdot (T_{1}-T_{2}) = 0[/tex]

The power consumed by the compressor can be calculated by the following expression:

[tex]\dot W_{in} = \dot m \cdot c_{v}\cdot (T_{2}-T_{1})[/tex]

Let consider that air behaves ideally. The density of air at inlet is:

[tex]P\cdot V = n\cdot R_{u}\cdot T[/tex]

[tex]P\cdot V = \frac{m}{M}\cdot R_{u}\cdot T[/tex]

[tex]\rho = \frac{P\cdot M}{R_{u}\cdot T}[/tex]

[tex]\rho = \frac{(104\,kPa)\cdot (28.02\,\frac{kg}{kmol})}{(8.315\,\frac{kPa\cdot m^{3}}{kmol\cdot K} )\cdot (292\,K)}[/tex]

[tex]\rho = 1.2\,\frac{kg}{m^{3}}[/tex]

The mass flow through compressor is:

[tex]\dot m = \rho \cdot \dot V[/tex]

[tex]\dot m = (1.2\,\frac{kg}{m^{3}})\cdot (0.15\,\frac{m^{3}}{s} )[/tex]

[tex]\dot m = 0.18\,\frac{kg}{s}[/tex]

The work input is:

[tex]\dot W_{in} = (0.18\,\frac{kg}{s} )\cdot (1.005\,\frac{kJ}{kg\cdot K})\cdot (565\,K-292\,K)[/tex]

[tex]\dot W_{in} = 49.386\,kW[/tex]