A crate with a mass of 187.5 kg is suspended from the end of a uniform boom. The upper end of the boom is supported by the tension of 3206 N in a cable attached to the wall. The lower end of the boom pivots at the location marked X on the same wall. Calculate the mass of the boom.

Respuesta :

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The mass of the boom is [tex]m_b= 21.12kg[/tex]

Explanation:

From the question we are told that

      The mass is [tex]m = 187.5kg[/tex]

       The tension the cable is  [tex]T = 3206\ N[/tex]

A sketch of the free body diagram  is shown on the second uploaded image

       From the second diagram

  The length L is evaluated as [tex]L = \sqrt{9^2 + 14^2}[/tex]

                                                     [tex]= 14.56 m[/tex]

 The angle  [tex]\alpha = tan^{-1} (\frac{5}{14} )[/tex]s

                        [tex]= 19.65^o[/tex]

The angle [tex]\beta = tan^{-1}(\frac{4}{14} )[/tex]

                      [tex]= 15.95^o[/tex]

At equilibrium the net torque about x is zero and this can be represented  mathematically

                  [tex]T * sin (\alpha + \beta ) * L -[\frac{m_bg }{2} +mg ]* L cos \beta = 0[/tex]

                [tex]T * sin (\alpha + \beta ) * L = [\frac{m_bg }{2} +mg ]* L cos \beta[/tex]

Where g is the acceleration due to gravity with a value of [tex]g =9.8 m/s^2[/tex]

  Making [tex]m_b[/tex] the mass of the boom the subject  of the formula

              [tex]m_b = \frac{2 *[\frac{T sin(\alpha +\beta ) }{cos \beta } -mg]}{g}[/tex]

  Substitution the values

            [tex]m_b = \frac{2 *[\frac{3206 * sin (19.65 + 15.95)}{cos 15.95} - 187.5*9.8]}{9.8}[/tex]

                 [tex]m_b= 21.12kg[/tex]

               

           

             

Ver imagen okpalawalter8
Ver imagen okpalawalter8