Answer:
a) A. The population must be normally distributed
b) P(X < 68.2) = 0.7967
c) P(X ≥ 65.6) = 0.3745
Step-by-step explanation:
a) The population is normally distributed having a mean ([tex]\mu_x[/tex]) = 64 and a standard deviation ([tex]\sigma_x[/tex]) = [tex]\frac{19}{\sqrt{14} }[/tex]
b) P(X < 68.2)
First me need to calculate the z score (z). This is given by the equation:
[tex]z=\frac{x-\mu_x}{\sigma_x}[/tex] but μ=64 and σ=19 and n=14, [tex]\mu_x=\mu=64[/tex] and [tex]\sigma_x=\frac{ \sigma}{\sqrt{n} }=\frac{19}{\sqrt{14} }[/tex]
Therefore: [tex]z=\frac{68.2-64}{\frac{19}{\sqrt{14} } }=0.83[/tex]
From z table, P(X < 68.2) = P(z < 0.83) = 0.7967
P(X < 68.2) = 0.7967
c) P(X ≥ 65.6)
First me need to calculate the z score (z). This is given by the equation:
[tex]z=\frac{x-\mu_x}{\sigma_x}[/tex]
Therefore: [tex]z=\frac{65.6-64}{\frac{19}{\sqrt{14} } }=0.32[/tex]
From z table, P(X ≥ 65.6) = P(z ≥ 0.32) = 1 - P(z < 0.32) = 1 - 0.6255 = 0.3745
P(X ≥ 65.6) = 0.3745
P(X < 68.2) = 0.7967