Answer:
0.152724283058 rad/s
Explanation:
[tex]\omega_i=0.602\ rad/s[/tex]
In this system the angular momentum is conserved
[tex]L_i=L_f\\\Rightarrow 1.22\times 10^{-3}\times 0.602=(1.22\times 10^{-3}+5\times 10^{-3}\times 0.288)\omega_f\\\Rightarrow \omega_f=\dfrac{1.22\times 10^{-3}\times 0.602}{(1.22\times 10^{-3}+5\times 10^{-3}\times 0.288^2)}\\\Rightarrow \omega_f=0.449275716942\ rad/s[/tex]
Change in angular velocity is
[tex]\Delta \omega=0.449275716942-0.602=-0.152724283058\ rad/s[/tex]
The change in angular velocity is 0.152724283058 rad/s