Respuesta :

Answer:

30[tex]\sqrt{11}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplifying 3[tex]\sqrt{50}[/tex]

= 3([tex]\sqrt{25(2)}[/tex] )

= 3(5[tex]\sqrt{2}[/tex] )

= 15[tex]\sqrt{2}[/tex]

Thus

3[tex]\sqrt{50}[/tex] × [tex]\sqrt{22}[/tex]

= 15[tex]\sqrt{2}[/tex] × [tex]\sqrt{22}[/tex]

= 15 × [tex]\sqrt{2(22)}[/tex]

= 15 × [tex]\sqrt{44}[/tex]

= 15 × [tex]\sqrt{4(11)}[/tex]

= 15 × 2[tex]\sqrt{11}[/tex]

= 30[tex]\sqrt{11}[/tex]