Respuesta :
c(x)=4x-2 and d(x)=[tex] x^{2} +5x[/tex]
(c*d)(x)
(4x-2)([tex] x^{2} +5x)[/tex]
Open the brackets and multiply the terms in the order shown below;
4x([tex] x^{2} +5x)[/tex]-2([tex] x^{2} +5x)[/tex]
=4[tex] x^{3} +20 x^{2} -2 x^{2} -10x[/tex]
=4[tex] x^{3} +18 x^{2} -10x[/tex]
(c*d)(x)
(4x-2)([tex] x^{2} +5x)[/tex]
Open the brackets and multiply the terms in the order shown below;
4x([tex] x^{2} +5x)[/tex]-2([tex] x^{2} +5x)[/tex]
=4[tex] x^{3} +20 x^{2} -2 x^{2} -10x[/tex]
=4[tex] x^{3} +18 x^{2} -10x[/tex]
The value of (c*d)(x) is 4x³ + 18x² - 10x
How to find the value of (c*d)(x)?
Given that,
- c(x) = 4x – 2
- d(x) = [tex]x^{2} +5x[/tex]
∴ (c*d)(x) = c(x)d(x) = (4x – 2)([tex]x^{2} +5x[/tex])
How to multiply two algebric expressions?
- To multiply two algebric expressions, we can do it seperately term by term.
- Then we should adjust the like terms.
∴ (4x – 2)([tex]x^{2} +5x[/tex])
= (4x)([tex]x^{2} +5x[/tex]) -2([tex]x^{2} +5x[/tex])
= 4x³ + 20x² - 2x² - 10x
= 4x³ + 18x² - 10x
∴ The value of (c*d)(x) is 4x³ + 18x² - 10x
Learn more about algebric multiplications here: https://brainly.com/question/2241589
#SPJ2