Respuesta :

Louli
Answer:
[tex] \frac{y(y+2)}{(y+1)} [/tex]

Explanation:
When multiplying fractions, we multiply the numerators together and the denominator together and then we simplify.

The given expression is:
[tex] \frac{y^2}{y-3} * \frac{y^2-y-6}{y^2+y} [/tex]

Let's consider the second fraction given:
[tex] \frac{y^2-y-6}{y^2+y} [/tex]
We can do the following:
1- factor the numerator
2- take y as a common factor from the denominator
Doing this, we will end up with the following fraction:
[tex] \frac{(y-3)(y+2)}{y(y+1)} [/tex]

The expression now became:
[tex] \frac{y^2}{y-3} * \frac{(y-3)(y+2)}{y(y+1)} [/tex]

We can now multiply the numerators together and the denominator together as follows:
[tex] \frac{y^2}{y-3} * \frac{(y-3)(y+2)}{y(y+1)} [/tex] = [tex] \frac{y^2(y-3)(y+2)}{y(y+1)(y-3)} [/tex]

Finally, we can note that we can perform the following on the resultant expression:
1- divide both the numerator and denominator by (y-3)
2- divide both the numerator and denominator by (y)
Doing this, we will end up with:
[tex] \frac{y(y+2)}{(y+1)} [/tex]

Since no further simplification can be done, therefore, our final expression is:
[tex] \frac{y(y+2)}{(y+1)} [/tex]

Hope this helps :)

Answer:

the product of given expression [tex]\frac{y^2}{y-3}[/tex] and  [tex]\frac{y^2-y-6}{y^2+y}[/tex] is [tex]\frac{y(y+2)}{(y+1)},y\neq -1[/tex]

Step-by-step explanation:

 Consider the given expression [tex]\frac{y^2}{y-3}[/tex] and  [tex]\frac{y^2-y-6}{y^2+y}[/tex]

We have to write the product of given expressions  in simplest form,

We solve the two terms separately,

Consider the second expression

[tex]\frac{y^2-y-6}{y^2+y}[/tex]

Taking y common from denominator we have  [tex]\frac{y^2-y-6}{y(y+1)}[/tex]

Numerator consist of a quadratic equation,  [tex]{y^2-y-6}[/tex]

We can solve it using middle term splitting method,

-y can be written as 2y -3y

Thus, it becomes,

[tex]{y^2-y-6}=y^2+2y-3y-6[/tex]

Taking y common from first two terms and -3 common from last two terms we have,

[tex]y^2+2y-3y-6=y(y+2)-3(y+2)=(y-3)(y+2)[/tex]

thus, the second expression becomes ,

[tex]\frac{y^2-y-6}{y(y+1)}=\frac{(y-3)(y+2)}{y(y+1)}[/tex]

Now , we multiply the two expression ,we get,

[tex]\Rightarrow \frac{y^2}{y-3}\times \frac{y^2-y-6}{y^2+y}[/tex]

[tex]\Rightarrow \frac{y^2}{y-3}\times \frac{(y-3)(y+2)}{y(y+1)} [/tex]

Simplifying , we get,

[tex]\Rightarrow y \times \frac{(y+2)}{(y+1)}\\\\\\ \Rightarrow\frac{y(y+2)}{(y+1)},y\neq -1[/tex]

Thus, the product of given expression [tex]\frac{y^2}{y-3}[/tex] and  [tex]\frac{y^2-y-6}{y^2+y}[/tex] is [tex]\frac{y(y+2)}{(y+1)},y\neq -1[/tex]