Respuesta :
For this specific problem, x rounded to the nearest meter is 4. I am hoping that this answer has satisfied your query about and it will be able to help you, and if you’d like, feel free to ask another question.
Answer:
The value of x=4 meters.
Step-by-step explanation:
Let DC=x m
In triangle ABC
[tex]\theta=35.5{\circ}[/tex]
AB=10 m
We know that
[tex]tan\theta=\frac{perpendicular side }{Base}[/tex]
[tex]tan35.5^{\circ}=\frac{AB}{BC}[/tex]
[tex]0.713=\frac{10}{BC}[/tex]
[tex]BC=\frac{10}{0.713}[/tex]
BC=14.02m
In triangle EBD
EB=14 m
[tex]\theta=54.5^{\circ}[/tex]
[tex]tan54.5=\frac{EB}{BD}[/tex]
[tex]1.4019=\frac{14}{BD}[/tex]
[tex]BD=\frac{14}{1.4019}[/tex]
BD=9.98 m.
BC=BD+DC
14.02=9.98+x
By using substituting property
x=14.02-9.98
By using subtraction property of equality
x=4.04
x=4 ( nearest meter)
The value of x=4 m.
