Determine whether a triangle can be formed with the given side lengths. If so, use Heron's formula to find the area of the triangle. . . a = 240 . b = 127 . c = 281

Respuesta :

The answer is 15,183.77 feet.

Answer:

15183.77 square units

Step-by-step explanation:

We are given that

a=240 units

b=127 units

c=281 units

If given sides form triangle then sum of any twos sides is greater than third side.

[tex]a+b=240+127=367 >c=281[/tex]

Hence, given sides form triangle.

Half perimeter of triangle =[tex]s=\frac{a+b+c}{2}=\frac{240+127+281}{2}=324 units[/tex]

Heron's formula : Area of triangle =[tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]

Apply this formula ,

Area of triangle =[tex]\sqrt{324(324-240)(324-127)(324-281)}[/tex]

Area of triangle=15183.77 square units