Respuesta :
[tex]y=\sqrt[3]{-x}-3\ and\ x\in(-8;\ 8)\\\\subtitute\ x=-8\ and\ x=8\ to\ the\ equation:\\\\y=\sqrt[3]{-(-8)}-3=\sqrt[3]8-3=2-3=-1\\\\y=\sqrt[3]{-8}-3=-2-3=-5\\\\Answer:\boxed{\{y|-5 \ \textless \ y \ \textless \ -1\}}\to\fbox{b.} [/tex]
Answer:
correct option is b) {y : -5 < x < - 1 }
Step-by-step explanation:
The graph of function y = ∛-x -3 over the domain of {x : -8 < x < 8 } is shown in figure-1
Range is set of Y values for which the function is define.
So, in order to find the range , we need to find the corresponding y values for given domain.
Put x = -8 in y = ∛-x -3 then we get,
y = ∛-x -3
y = ∛-(-8) -3
y = ∛8 -3
y = 2 -3
y = - 1
Put x = 8 in y = ∛-x -3 then we get,
y = ∛-(8) -3
y = ∛-8 -3
y = -2 -3
y = - 5
Hence the range of function y = ∛-x -3 over the domain of {x : -8 < x < 8 } is
{y : -5 < x < - 1 }
correct option is b) {y : -5 < x < - 1 }
