Find the exact value of cos(theta) for an angle (theta) with tan (theta)= -2/3 and with its terminal side in Quadrant II.

[tex]a.\frac{2\sqrt{13} }{13} \\\\b. - \frac{3\sqrt{13} }{13} \\\\c. -\frac{2}{5} \\\\d. \frac{3}{\sqrt{13} }[/tex]

Respuesta :

Answer:

[tex]-\frac{3\sqrt{13}}{13}[/tex].

Step-by-step explanation:

Since we are in quadrant two, cosine value is negative while sine value is positive.

We are going to use the Pythagorean Identity: [tex]1+\tan^2(\theta)=\sec^2(\theta)[/tex].

[tex]1+(\frac{-2}{3})^2=\sec^2(\theta)[/tex]

[tex]1+\frac{4}{9}=\sec^2(\theta)[/tex]

[tex]\frac{9+4}{9}=\sec^2(\theta)[/tex]

[tex]\frac{13}{9}=\sec^2(\theta)[/tex]

[tex]\pm \sqrt{\frac{13}{9}}=\sec(\theta)[/tex]

[tex]\pm \frac{\sqrt{13}}{3}=\sec(\theta)[/tex]

Since cosine and secant are reciprocals then they will have the same sign as along as they both exist.

[tex]\sec(\theta)=-\frac{\sqrt{13}}{3}[/tex]

[tex]\cos(\theta)=-\frac{3}{\sqrt{13}}[/tex].

I don't see this answer as I'm going to rationalize the denominator.

[tex]\cos(\theta)=-\frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}[/tex].

[tex]\cos(\theta)=-\frac{3\sqrt{13}}{13}[/tex].

Answer:

b

Step-by-step explanation:

1 + tan²theta = sec²theta

1 + (-2/3)² = sec²theta

1 + 4/9 = sec²theta

13/9 = sec²theta

sec theta = -sqrt(13)/3

Because Quadrant 2

cos theta = 1 ÷ sec theta

Cos there = -3/sqrt(13)

-3sqrt(13)/13

After rationalization