Answer:
according to euclids division lemma
a=bq+r
Step-by-step explanation:
so, b=3. r=0,1,2
a=3q+r
cubing both sides
a³=(3q+0)³
a=3q³
a=9q³ where m =q³
a=9m
r=1
a³=(3q+1)³ (a+b)³=a³+b³+3a²b+3ab²)
a³=(3q)³+1³+3(3q)²(1)+3(3q)(1)²
=27q³+1+9q²+9q
take common
=9(3q³+q²+q)+1. where (3q³+q²+q)=m
=9m+1
r=2
a³=(3q+2)³
=(3q)³+2³+3(3q)²+2)+3(3q)(2)²
=27q³+8+54q²+36q
taking common
=9(3q³+6q²+4q)+8 where (3q³+6q²+4q)=m
9m +8