Respuesta :

foci of [tex]\frac{x^{2}}{16} -\frac{y^{2}}{4} =1[/tex] is [tex](2\sqrt{5}, 0)[/tex]. correct option a.

Step-by-step explanation:

Complete equation of Hyperbola for the above question is x2/16-y2/4  = 1 or [tex]\frac{x^{2}}{16} -\frac{y^{2}}{4} =1[/tex]  , Simplify each term in the equation in order to set the right side equal to  1 . The standard form of an ellipse or hyperbola requires the right side of the equation be  1 . This is the form of a hyperbola. Use this form to determine the values used to find vertices and asymptotes of the hyperbola:

[tex]\frac{(x-a)^{2}}{a^{2}} - \frac{(y-k)^{2}}{b^{2}} = 1[/tex]

a=4 , b = 2, h = 0 , k= 0

Find the distance from the center to a focus of the hyperbola by using the following formula:

[tex]\sqrt{a^{2}+b^{2}}[/tex]

Substitute the value of  a  and  b  in the formula.

[tex]\sqrt{4^{2}+2^{2}}[/tex] = [tex]2\sqrt{5}[/tex]

The first focus of a hyperbola can be found by adding  c  to  h

(h+c,k)

Substitute the known values of h ,  c , and  k into the formula and simplify:

[tex](2\sqrt{5}, 0)[/tex] . ∴ foci of [tex]\frac{x^{2}}{16} -\frac{y^{2}}{4} =1[/tex] is [tex](2\sqrt{5}, 0)[/tex]. correct option a.

Answer: (2√5, 0)

Step-by-step explanation: got it right