Respuesta :

The second least value among the fractions  is [tex]\frac{3}{8}[/tex]

Step-by-step explanation:

To find:

The least value we will change the fractions into decimal fractions

Given:

Fractions are [tex]\frac{17}{19}, \frac{10}{13},\frac{13}{15}, \frac{2}{9},\frac{3}{8}[/tex]

Now resolving the above given fractions into their decimal value we get,

[tex]\frac{17}{19}[/tex] = 0.8948

[tex]\frac{10}{13}[/tex] = 0.7692

[tex]\frac{13}{15}[/tex] = 0.8667

[tex]\frac{2}{9}[/tex] = 0.2222

[tex]\frac{3}{8}[/tex] = 0.375

Now, arranging them in ascending order we get,

[tex]\frac{2}{9}[/tex] < [tex]\frac{3}{8}[/tex]  < [tex]\frac{10}{13}[/tex] < [tex]\frac{13}{15}[/tex] < [tex]\frac{17}{19}[/tex]

Hence, the second least value is [tex]\frac{3}{8}[/tex]

Answer: 3/8

Step-by-step explanation:

To solve this question, convert to decimal by dividing the numerator by the denominator.

17/19 = 17 ÷ 19 = 0.89

10/13= 10÷13= 0.77

13/15= 13 ÷15= 0.87

2/9= 2÷9= 0.22

3/8= 3÷8=0.38

Therefore, least value of fraction is 2/9 while second least value is 3/8.

I hope this helps.