The second least value of fraction among 17/19, 10/13, 13/15, 2/9, 3/8 is _____

The second least value among the fractions is [tex]\frac{3}{8}[/tex]
Step-by-step explanation:
To find:
The least value we will change the fractions into decimal fractions
Given:
Fractions are [tex]\frac{17}{19}, \frac{10}{13},\frac{13}{15}, \frac{2}{9},\frac{3}{8}[/tex]
Now resolving the above given fractions into their decimal value we get,
[tex]\frac{17}{19}[/tex] = 0.8948
[tex]\frac{10}{13}[/tex] = 0.7692
[tex]\frac{13}{15}[/tex] = 0.8667
[tex]\frac{2}{9}[/tex] = 0.2222
[tex]\frac{3}{8}[/tex] = 0.375
Now, arranging them in ascending order we get,
[tex]\frac{2}{9}[/tex] < [tex]\frac{3}{8}[/tex] < [tex]\frac{10}{13}[/tex] < [tex]\frac{13}{15}[/tex] < [tex]\frac{17}{19}[/tex]
Hence, the second least value is [tex]\frac{3}{8}[/tex]
Answer: 3/8
Step-by-step explanation:
To solve this question, convert to decimal by dividing the numerator by the denominator.
17/19 = 17 ÷ 19 = 0.89
10/13= 10÷13= 0.77
13/15= 13 ÷15= 0.87
2/9= 2÷9= 0.22
3/8= 3÷8=0.38
Therefore, least value of fraction is 2/9 while second least value is 3/8.
I hope this helps.