A circle has an area of 153.86 units2 and a circumference of 43.96 units. If the radius is 7 units, what can be said about the relationship between the area and the circumference? (Use 3.14 for .)

Respuesta :

gmany

Step-by-step explanation:

[tex]\text{Circumference:}\\\\C=2\pi r\\\\\text{Area:}\\\\A=\pi r^2\\\\\dfrac{A}{C}=\dfrac{\pi r^2}{2\pi r}\qquad\text{cancel}\ \pi\ \text{and}\ r\\\\\dfrac{A}{C}=\dfrac{r}{2}\\\\\bold{The\ number\ of\ areas\ of\ a\ circle\ is}\ \dfrac{r}{2}\ \bold{larger\ than\ its\ circumference}.[/tex]

[tex]\text{For a given area and circumference}:\\\\A=153.86,\ C=43.96,\ r=7\\\\\dfrac{A}{C}=\dfrac{153.86}{43.96}=3.5=\dfrac{7}{2}=\dfrac{r}{2}\\\\\dfrac{A}{C}=\dfrac{r}{2}[/tex]