Respuesta :
Answer:
[tex]\large\boxed{\large\boxed{K_c=1.51\times 10^{-2}}}[/tex]
Explanation:
1. Calculate the iniital concentration of HI(g) introduced
The initial concentration of HI(g), [HI(g)], is the number of moles per liter:
- [HI(g)] = 0.316mol/1liter = 0.316M
2. Build the ICE (initial, change, equilibrium) table
ICE table:
2HI(g) → H₂(g) + I₂(g)
I 0.316 0 0
C - 2x +x +x
E 0.316 - 2x x x (x = 3.12×10⁻²M)
3. Find the equilibrium constant, Kc
[tex]K_c=\dfrac{x\cdot x}{(0.316-2x)^2}\\\\\\K_c=\dfrac{(3.12\times 10^{-2}M)^2}{\big(0.316M-2(3.12\times 10^{-2}M)\big)^2}\\\\\\K_c=1.51\times 10^{-2}[/tex]
The equilibrium constant for the reaction will be: [tex]K_c=1.51*10^{-2}[/tex]
Calculation for initial concentration of HI(g) produced:
The initial concentration of HI(g), [HI(g)], is the number of moles per liter:
[HI(g)] = 0.316mol/1liter = 0.316M
Chemical reaction:
2HI(g) → H₂(g) + I₂(g)
I 0.316 0 0
C - 2x +x +x
E 0.316 - 2x x x (x = 3.12×10⁻²M)
Calculation for equilibrium constant:
[tex]K_c=\frac{x.x}{(0.316-2x)^2} \\\\K_c=\frac{(3.2*10^ {-2})^2}{(0.316-2*3.12*10^{-2})^2}\\\\K_c=1.51*10^{-2}[/tex]
Find more information about Equilibrium constant here:
brainly.com/question/12858312