Respuesta :

Answer:

[tex]a=8[/tex]

[tex]b=0[/tex]

[tex]c=1[/tex]

Step-by-step explanation:

The vertex form of a quadratic is [tex]y=a(x-h)^2+k[/tex] where the vertex is [tex](h,k)[/tex].

We are given [tex]h=0,k=1[/tex].

Plugging this in gives us:

[tex]y=a(x-0)^2+1[/tex]

Simplifying:

[tex]y=ax^2+1[/tex]

Since it passes through [tex](x,y)=(1,9)[/tex], we can use this information to find [tex]a[/tex].

[tex]9=a(1)^2+1[/tex]

[tex]9=a+1[/tex]

[tex]8=a[/tex]

So the quadratic in vertex form is [tex]y=8x^2+1[/tex].

That happens to be in standard form as well.

[tex]a=8[/tex]

[tex]b=0[/tex]

[tex]c=1[/tex]

The equation of a parabola is [tex]y = a(x - h)^2 + k[/tex], where (h,k) represents the vertex.

The values of a, b and c are 8, 0 and 1, respectively.

We have:

[tex](h,k) = (0,1)[/tex] --- the vertex

[tex](x,y) = (1,9)[/tex] --- the point it passes through

Substitute [tex](h,k) = (0,1)[/tex] in [tex]y = a(x - h)^2 + k[/tex]

[tex]y = a(x - 0)^2 + 1[/tex]

[tex]y = ax^2 + 1[/tex]

Substitute [tex](x,y) = (1,9)[/tex] in [tex]y = ax^2 + 1[/tex]

[tex]9= a \times 1^2 +1[/tex]

[tex]9= a \times 1 +1[/tex]

[tex]9= a +1[/tex]

Collect like terms

[tex]a= 9 -1[/tex]

[tex]a = 8[/tex]

Substitute [tex]a = 8[/tex] in [tex]y = ax^2 + 1[/tex]

So, the equation of the parabola is:

[tex]y = 8x^2 + 1[/tex]

Compare [tex]y = 8x^2 + 1[/tex] to [tex]f(x)=ax^2+bx+c[/tex]

[tex]a = 8\\b = 0\\c =1[/tex]

See attachment for the equation of [tex]y = 8x^2 + 1[/tex]

Read more about equations of parabola at:

https://brainly.com/question/4074088

Ver imagen MrRoyal