Suppose that f is continuous, [tex]\int\limits^5__-2 \,[/tex] f(x)dx=11 and [tex]\int\limits^2__-2 \,[/tex] f(x)dx=14 . Find the value of the integral [tex]\int\limits^2_5 \,[/tex] f(x)dx.

Answer:
3
Step-by-step explanation:
[tex]\int_{-2}^{5} f(x)dx=11[/tex] implies [tex]\int_5^{-2}f(x)dx=-11[/tex]
[tex]\int_5^2f(x)dx=\int_c^2f(x)dx+\int_5^cf(x)dx[/tex]
where in this case we will let [tex]c=-2[/tex] for our purposes.
[tex]\int_5^{2}f(x)dx=\int_{-2}^2f(x)dx+\int_5^{-2}f(x)dx[/tex]
[tex]\int_5^2f(x)dx=14+(-11)[/tex]
[tex]\int_5^{2}f(x)dx=3[/tex]
Answer:
3
Step-by-step explanation:
[-2, 5] = [-2, 2] + [2, 5]
11 = 14 + [2, 5]
[2, 5] = 11 - 14 = -3
[5, 2] = -(-3) = 3