Respuesta :
[tex]g(x) = 1(x-0) + 1[/tex] , where a = 1 , h = 0 , k = 1 .
Step-by-step explanation:
Here we have , f(x) = x and , we need to find g(x) which the translation 1 unit up of f(x) = x . Translation 1 unit up of f(x) means increasing value of function or f(x) or y by one i.e. g(x) = f(x) + 1. Since, it's given that f(x) = x .
Putting value of f(x) in equation g(x) = f(x) + 1 we get:
[tex]g(x) = f(x) + 1\\f(x) = x\\[/tex]
⇒ [tex]g(x) = x + 1[/tex]
Now, let's right this g(x) in form of a(x - h)+ k, where a, h, and k are integers:
⇒ [tex]g(x) = x + 1[/tex]
⇒ [tex]g(x) = 1(x-0) + 1[/tex]
∴ [tex]g(x) = 1(x-0) + 1[/tex] , where a = 1 , h = 0 , k = 1 .