Respuesta :

[tex]$ \frac{5+\sqrt2}{23}[/tex]

Solution:

Given expression is [tex]\frac{1}{5-\sqrt{2}}[/tex].

Rationalise the denominator means removing the root terms in the denominator.

To rationalise the denominator:

[tex]$\frac{1}{5-\sqrt{2}}[/tex]

Multiply the numerator and denominator by the conjugate [tex]5+\sqrt{2}[/tex].

[tex]$\Rightarrow\frac{1}{5-\sqrt{2}}\times\frac{5+\sqrt{2}}{5+\sqrt{2}}[/tex]

[tex]$\Rightarrow \frac{1(5+\sqrt2)}{(5-\sqrt2)(5+\sqrt2)}[/tex]

Use the algebraic identity [tex](a-b)(a+b)=a^{2}-b^{2}[/tex] in the denominator.

[tex]$\Rightarrow \frac{5+\sqrt2}{5^{2}-(\sqrt{2})^{2}}[/tex]

[tex]$\Rightarrow \frac{5+\sqrt2}{25-2}[/tex]

[tex]$\Rightarrow \frac{5+\sqrt2}{23}[/tex]

Hence the denominator is rationalised.