Respuesta :

(–1, 6.5)

Step-by-step explanation:

Given XY is a line segment with coordinates (–4, 2) and y(2, 11) respectively.

To find the coordinates perpendicular to XY.

A Perpendicular bisector is a line segment which intersects the line segment at its midpoint.

Hence, using midpoint formula we can find perpendicular co-ordinates.

Mid-point = [tex]\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)[/tex]

Here, [tex]x_{1}=-4, x_{2}=2, y_{1}=2, y_{2}=11[/tex]

Mid-point = [tex]\left(\frac{-4+2}{2}, \frac{2+11}{2}\right)[/tex]

                = [tex]\left(\frac{-2}{2}, \frac{13}{2}\right)[/tex]

                = (–1, 6.5)

Hence, the coordinates perpendicular to XY is (–1, 6.5).