Given that DF/PR=FE/RQ=3/2, what additional information is needed to prove △DEF ~ △PQR using the SSS similarity theorem?

A. DE ≅ PQ

B.
C. DE/EF = 3/2

D. DE/PQ = 3/2

Respuesta :

Answer:

D. [tex]\frac{DE}{PQ} = \frac{3}{2}[/tex]

Step-by-step explanation:

Given:

[tex]\frac{DE}{PR}=\frac{FE}{RQ} = \frac{3}{2}[/tex]

SSS Similarity theorem: Triangles are similar if all three sides in one triangle are in the same proportion to the corresponding sides in the other.

Applying SSS theorem to ΔDEF and Δ PQR :

[tex]\frac{DE}{PQ} = \frac{EF}{QR} = \frac{DF}{PR}[/tex]

But

[tex]\frac{DF}{PR} = \frac{EF}{RQ} = \frac{3}{2}[/tex]

Therefore,

[tex]\frac{DE}{PQ} = \frac{3}{2}[/tex]

This is the additional information needed to show the triangles are similar as per SSS similarity theorem.