Respuesta :

Answer:

The sum of the first six terms is

[tex]32-8+2-0.5+\frac{1}{8}-\frac{1}{32}=25.59[/tex]

Step-by-step explanation:

Given series is 32-8+2-0.5+...

We may write [tex]{\{32,-8,2,-0.5,...}\}[/tex]

Let [tex]a_{1}=32,a_{2}=-8,a_{3}=2,a_{4}=-05,...[/tex]

Common ratio [tex]r=\frac{a_{2}}{a_{1}}[/tex]

[tex]r=\frac{-8}{32}[/tex]

[tex]r=\frac{-1}{4}[/tex]

[tex]r=\frac{a_{3}}{a_{2}}[/tex]

[tex]r=\frac{2}{-8}[/tex]

[tex]r=\frac{-1}{4}[/tex]

Therefore the common ratio is [tex]r=\frac{-1}{4}[/tex]

Therefore given sequence is of the form of Geometric sequence

The nth term of the geometric sequence is

[tex]a_{n}=ar^{n-1}[/tex]

First to find the 5th and 6th term

That is  substitute n=5 and n=6 ,a=32 and [tex]r=\frac{-1}{4}[/tex] in above equation we get

[tex]a_{5}=32(\frac{-1}{4})^{5-1}[/tex]

[tex]a_{5}=32(\frac{-1}{4})^{4}[/tex]

[tex]a_{5}=32[(\frac{-1}{4})\times (\frac{-1}{4})\times (\frac{-1}{4})\times (\frac{-1}{4})][/tex]

[tex]=\frac{1}{8}[/tex]

Therefore [tex]a_{5}=\frac{1}{8}[/tex]

[tex]a_{6}=32(\frac{-1}{4})^{6-1}[/tex]

[tex]a_{6}=32(\frac{-1}{4})^{5}[/tex]

[tex]a_{6}=32[(\frac{-1}{4})\times (\frac{-1}{4})\times (\frac{-1}{4})\times (\frac{-1}{4})\times (\frac{-1}{4})][/tex]

[tex]=\frac{-1}{32}[/tex]

Therefore [tex]a_{6}=-\frac{1}{32}[/tex]

Therefore the sum of the first six terms is

[tex]32-8+2-0.5+\frac{1}{8}-\frac{1}{32}[/tex]

[tex]=25.5+\frac{3}{32}[/tex]

[tex]=\frac{819}{32}[/tex]

[tex]=25.59[/tex]

Therefore the sum of the first six terms is

[tex]32-8+2-0.5+\frac{1}{8}-\frac{1}{32}=25.59[/tex]