Answer:
4.27*10^(-10) to the left
Explanation:
Force exerted by right charge
[tex]F_{right} = \frac{k*(2e)*(2e)}{((1.5 - 0.35)*10^(-9))^2} \\\\F_{right} = \frac{8.99*10^9 * 4 * (1.6*10^(-19))^2}{((1.5 - 0.35)*10^(-9))^2} \\\\F_{right} = 6.96*10^(-10) N[/tex]
Force exerted by left charge
[tex]F_{left} = \frac{k*(2e)*(2e)}{((1.5 + 0.35)*10^(-9))^2} \\\\F_{left} = \frac{8.99*10^9 * 4 * (1.6*10^(-19))^2}{((1.5 + 0.35)*10^(-9))^2} \\\\F_{left} = 2.689*10^(-10) N[/tex]
Resultant Force
[tex]F_{res} = F_{right} - F_{left}\\F_{res} = 6.96*10^(-10) - 2.689*10^(-10)\\\\F_{res} = 4.271 * 10 ^(-10) N[/tex]
Hence, right charge exerts more force than left so central experience the above force in left direction.