Respuesta :
Answer:
The angle will the car have traveled is 24 degrees.
Explanation:
Given that,
Radius of the circular curve, r = 110 mm
Tangential acceleration of the car, [tex]a_t=1.2\ m/s^2[/tex]
Total acceleration, [tex]a=3\ m/s^2[/tex]
We need to find the angle will the car have traveled. It is given by :
[tex]tan\theta=\dfrac{a_t}{a_r}[/tex]
[tex]a_r[/tex] is the radial acceleration of the car
[tex]tan\theta=\dfrac{a_t}{\sqrt{a^2-a_t^2}}[/tex]
[tex]tan\theta=\dfrac{1.2}{\sqrt{(3)^2-(1.2)^2}}[/tex]
[tex]tan\theta=0.436[/tex]
[tex]\theta=23.55^{\circ}[/tex]
or
[tex]\theta=24^{\circ}[/tex]
So, the angle will the car have traveled is 24 degrees. Hence, this is the required solution.
Answer:
23.58°
Explanation:
Tangential acceleration, [tex]a_{t}[/tex] = 1.2 m/s²
Total acceleration, a = 3 m/s²
Let the angle is Ф.
According to the formula
[tex]a^{2}=a_{t}^{2}+a_{r}^{2}[/tex]
[tex]9=1.2^{2}+a_{r}^{2}[/tex]
[tex]a_{r}[/tex] = 2.75 m/s²
[tex]tan\phi =\frac{a_{t}}{a_{r}}[/tex]
[tex]tan\phi =\frac{1.2}{2.75}[/tex]
tanФ = 0.4364
Ф = 23.58°