Verify that the indicated function y = ϕ(x) is an explicit solution of the given first-order differential equation. y' = 2xy2; y = 1/(16 − x2)

Respuesta :

Answer with Step-by-step explanation:

We are given that a differential equation

[tex]y'=2xy^2[/tex] and [tex]y=\frac{1}{16-x^2}=(16-x^2)^{-1}[/tex]

We have to verify that the function y=[tex]\phi(x)[/tex] is an explicit function of the given first order differential equation.

Differentiate w.r.t x

[tex]y'=-(16-x^2)^{-2}(-2x)[/tex]

By using the formula

[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]

[tex]y'=\frac{2x}{(16-x^2)^2}[/tex]

Substitute the value of y in given differential equation

[tex]y'=2x\times (\frac{1}{16-x^2})^2[/tex]

[tex]y'=\frac{2x}{(16-x^2)^2}[/tex]

LHS=RHS

Hence, the function y is an explicit function of the given first order differential equation.