Answer:
Option A
[tex]m\angle B=56.7^o[/tex]
[tex]a=2.5\ m[/tex]
[tex]c=4.5\ m[/tex]
Step-by-step explanation:
step 1
Find the measure of angle B
we know that
[tex]m\angle A+m\angle B=90^o[/tex] ----> by complementary angles
we have
[tex]m\angle A=33.3^o[/tex]
substitute
[tex]33.3^o+m\angle B=90^o[/tex]
[tex]m\angle B=90^o-33.3^o[/tex]
[tex]m\angle B=56.7^o[/tex]
step 2
Find the measure of side c
Applying the law of sines
[tex]\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]
we have
[tex]b=3.8\ m\\B=56.7^o\\C=90^o[/tex]
substitute
[tex]\frac{3.8}{sin(56.7^o)}=\frac{c}{sin(90^o)}[/tex]
[tex]c=\frac{3.8}{sin(56.7^o)}sin(90^o)[/tex]
[tex]c=4.5\ m[/tex]
step 3
Find the measure of side a
Applying the law of sines
[tex]\frac{b}{sin(B)}=\frac{a}{sin(A)}[/tex]
we have
[tex]b=3.8\ m\\B=56.7^o\\A=33.3^o[/tex]
substitute
[tex]\frac{3.8}{sin(56.7^o)}=\frac{a}{sin(33.3^o)}[/tex]
[tex]a=\frac{3.8}{sin(56.7^o)}sin(33.3^o)[/tex]
[tex]a=2.5\ m[/tex]
Note: (mc) is not a unit, in the question the options were written without leaving any space
so
B = 56.7◦; a = 2.5mc = 4.5m
instead of
B = 56.7◦; a = 2.5 m; c=4.5 m