What is the value of x in the equation 4 and StartFraction 3 Over 10 EndFraction minus (2 and two-fifths x + 5 and one-half) = one-half (negative 3 and three-fifths x + 1 and one-fifth)?

Respuesta :

Answer: x = –3

Step-by-step explanation:

Step 1:The given expression is [tex]4 \frac{2}{10}-\left(2 \frac{2}{5} x+5 \frac{1}{2}\right)=\frac{1}{2}\left(-3 \frac{2}{5} x+1 \frac{1}{5}\right)[/tex].

Step 2: Let us first convert the mixed fraction into improper fraction.

[tex]\Rightarrow \frac{43}{10}-\left(\frac{12}{5} x+\frac{11}{2}\right)=\frac{1}{2}\left(\frac{-18}{5} x+\frac{6}{5}\right)[/tex]  

Step 3: Remove the brackets.

[tex]\Rightarrow \frac{43}{10}-\frac{12}{5} x-\frac{11}{2}=\frac{-9}{5} x+\frac{3}{5}[/tex]

Step 4: Write x terms one side and constant terms one side and solving.

[tex]\Rightarrow \frac{9}{5} x-\frac{12}{5} x=\frac{3}{5}-\frac{43}{10}+\frac{11}{2}[/tex]  

[tex]\Rightarrow \frac{-3}{5} x=\frac{6-43+55}{10}[/tex]

[tex]\Rightarrow \frac{-3}{5} x=\frac{18}{10}[/tex]  

[tex]\Rightarrow x=\frac{18}{10} \times \frac{-5}{3}[/tex]

x = –3

Therefore, the value of x in the given expression is –3.

Answer:

-3

Step-by-step explanation: