Determining Exponential Growth and Decay in Exercise, use the given information to write an exponential equation for y. Does the function represent exponential growth or exponential decay?
dy/dt = -4y, y = 30 when t = 0

Respuesta :

Answer:

[tex]y=30e^{-4t}[/tex]

Exponential decay.

Step-by-step explanation:

We are given that

[tex]\frac{dy}{dt}=-4y[/tex]

y=30 when t=0

Taking integration on both sides then we get

[tex]\int \frac{dy}{y}=-4\int dt[/tex]

[tex]lny=-4t+C[/tex]

By using the formula [tex]\int \frac{dx}{x}=ln x,\int dx=x[/tex]

[tex]y=e^{-4t+C}[/tex]

[tex]y=e^{C}e^{-4t}=Ce^{-4t}[/tex]

Where[tex]e^C=Constant=C[/tex]

[tex]y=Ce^{-4t}[/tex]

Substitute y=30 and t=0

[tex]30=C[/tex]

[tex]y=30e^{-4t}[/tex]

Apply limit t tends to infinity

[tex]\lim_{t\rightarrow \infty}=\lim_{t\rightarrow\infty}30e^{-4t}=0[/tex]

The value of function decreases with time therefore, it is an exponential decay.