Respuesta :

Answer:

18.6

Step-by-step explanation:

We are given that

[tex]22=32e^{-0.02k}[/tex]

We have to find the value of k.

Divide by 32 on both sides then we get

[tex]\frac{22}{32}=e^{-0.02k}[/tex]

[tex]\frac{11}{16}=e^{-0.02k}[/tex]

Taking ln on both sides then we get

[tex]ln\frac{11}{16}=-0.02k[/tex]

[tex]lne=1[/tex]

[tex]ln11-ln16=-0.02k[/tex]

[tex]log\frac{m}{n}=logm-logn[/tex]

[tex]2.398-2.77=-0.02k[/tex]

[tex]-0.372=-0.02k[/tex]

[tex]k=\frac{-0.372}{-0.02}=18.6[/tex]

Hence, the value of k=18.6